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Abstract

This work discusses the effects of periodic forcing on attracting cycles and more complicated aitractors for autonomous
sysems of nonlinear difference equations. Results indicate that an attractor for a periodicaly forced dynamica system may
inherit structure from an attractor of the autonomous (unforced) system and aso from the periodicity of the forcing. In particula,
a method is presented which shows that if the amplitude of the k-periodic forcing is small enough then the attractor for the forced
system is the union of % homeomorphic subsets. Examples from population biology and genetics indicate that each subset is also
horneomorphic to the attractor of the origind autonomous dynamical system. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 89.60.-x; 02.40.Vh
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1. Introduction

The effects of periodic variations in system inputs and parameters on the behavior of both continuous and discrete
dynamical systems have been widely studied since the work of Cartwright and Littlewood [I ]in 1945 on the forced
van der Pol equation. During the last 2.5 years, Cushing{2,3], Mackey and Glass[4], Inoue and Kamifukumoto[5],
Schaffer [6], Kot et al. [7], Rinaldi et a. [], Buchanan and Selgrade [9], Costantino et a. [IQ], King and Schaffer
[11], Henson[ 12], Henson et al. [ 13] and others have investigated new behaviors that result when periodic forcing
is introduced into biological models. Periodic fluctuations may occur in parameters intrinsic to an ecosystem such
as intraspecific and interspecific interaction parameters or birth, growth and death rates. On the other hand, periodic
variations may also appear in extrinsic parameters such as stocking and harvesting or migration effects. In both
instances, these periodic changes may be due to environmental factors such as seasons, climate and food supply or
due to the seasonal nature of stocking and harvesting.

Periodic forcing has been used to control chaotic behavior. Giiémez and Matias [14] illustrated how a state-
dependent stocking or harvesting may be used to produce stable periodic oscillation in population size for models
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with logistic and exponential maps, which produce chaotic regimes without forcing. In their examples, the period
of the resulting attracting cycle was amultiple of the period of the forcing. Alternatively, Ott et al. [15] controlled
chaos by periodically perturbing intrinsic system parameters. Both approaches were discussed inSolé et al. [16],
who also considered the complication of noise in the system.

In laboratory experiments, Jillson [ 17] effectively forced a flour beetle (Tribolium) population by alternating food
supply between high and low amountsin a 2-periodic fashion. He noticed that beetle population size cycled with
period 2 and that the average population size was greater than the size attained by a population given a constant
amount of food equal to the average of the 2-periodic food amounts. Henson and Cushing( 18], Costantino et al.
[10] and Henson et a. [19] explained this phenomenon both mathematically and biologically by showing that two
different 2-cycles occurred in the population sizes. One cycle (referred to asresonant) had an average population
size larger than the population given a constant food supply, corresponding to Jillson’s observations, while the other
cycle (called attenuant) had a smaller average population size. Both 2-cycles were observed in controlled laboratory
experiments. Recently, Henson et a. [ 13] haveillustrated the simultaneous occurrence of locally stable 4-cyclesin
beetle populations and investigated the dual role of determinism and stochasticity in asymptotic approach to these
cycles. From a mathematical point of view, the 2-cycles and 4-cycles are attractors in a discrete, nonautonomous
dynamical system.

Here, we study small amplitude periodic forcing of discrete dynamical systems. We show that the attractor for a
periodically forced system inherits structure from the attractor of the original autonomous dynamical system and
also from the periodicity of the forcing. Because the forcing is periodic, we view the nonautonomous system as a
composition of afinite number of autonomous maps which allows us to study how attractors of the autonomous
system are changed by small amplitude forcing. Using this approach, we extend the work of Henson [ ]2] which
described how small amplitude forcing affects attracting periodic orbits of the autonomous system. Henson[12]
showed that if the forcing is k-periodic then a hyperbolic attracting fixed point of the autonomous system continues
to an attracting k-cycle of the nonautonomous system and, furthermore, if mdividesk then a hyperbolic attracting
m-cycle for the autonomous system produces m attracting k-cycles for the nonautonomous system. If the attractor for
the autonomous system is more complicated than a cycle, we conjecture that the nonautonomous attractor consists
of k subsets each homeomorphic to the autonomous attractor. Although, we do not establish this rigorously, we do
prove that sequences of k maps which define the nonautonomous system are locally conjugate if the autonomous
map is a diffeomorphism in a neighborhood of the attractor of the autonomous system. Thus, we show that the
attractor for the nonautonomous system is the union of k homeomorphic subsets. In the examples we present, these
subsets are also all homeomorphic to the attractor of the autonomous system.

Section 2 introduces a model from population genetics which motivates our study. Section 3 discusses the general
framework of our approach and examples of the continuation and bifurcation of attracting periodic orbits under
k-periodic forcing. Section 4 presents a method for studying the continuation of more general attractors. This method
is applied to a prey-predator system in Section 5, where the attractor for the autonomous system is an invariant
loop. We prove that the autonomous map is a diffeomorphism in a neighborhood of this |oop and show that its
continuation under small amplitude 2-periodic forcing is the union of two homeomorphic loops which are mapped
back and forth by the nonautonomous system. Section 6 discusses an example of 5-periodic forcing in a population
interaction model, where the attractor is the union of five loops.

2. An example of 2-periodic forcing from population genetics

In order to motivate our discussion of how periodic forcing affects the structure of a nonperiodic attractor of an
autonomous system, we introduce a model from ecological genetics that accounts for the effects of selection and
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migration on the allele frequency and the population density of a single population (see [20,2 1]). Let x denote popu-
lation size or density of a diploid population with two alleles, A and «, at an autosomal locus and let p denote the fre-
quency of the A allele prior to selection, where 0 < p < 1. Hence, the population consists of individuals having one of
the three genotypes, AA, Ag, or aa. The genotypes have nonnegative per capita growth rate functions (fitnesses), f4,
faa» and fuq, which represent the pressures of natural selection and which are decreasing functions of x. Allelefit-
nesses f4 and f, are definedby fa= pfaa+(1—p) fas and f, = pfaa+(1—p) fue. A ccordingly, the population mean
fitness fisgiven by f = pfa+ (1= p) f.,. Assuming random mating, the following system of difference equations
describes the changes in allele frequency and population size that take place from generation » — 1 to generation n
for n = 1,2, .,

oy = Pn-l.fA(]’n—lan—l)
. SPn—1,x,-1) ’

This model is of “gene-pool” type (see [22]) and does not contain the details associated with specific, realistic pop-
ulations. However, the value of such models has been aptly summarized by Crow [22], who states “The gene-pool
model is a wonderful, simplifying convention. . . Oftenitissuch asimplified view that provides the most useful
insights into evolutionary processes.”

To include immigration, let anumber of individuals proportional to x migrate into this population from a nearby
population or collection of populations in each generation. We study immigration of period 2 by taking this con-
stant of proportionality to be given by h(1 4+ «(—1 )", where 1 > 0,0 <« < 1, and n is a positive integer.
When 5 is even, the immigration term is #(1 4+ «)x and, when = is odd, the immigration term is (1 — a)x.
Thus «h measures the variation in migration from an average rate of /. Following immigration, random mat-
ing is assumed to take place yielding Hardy-Weinberg proportions in the population of zygotes that form the
next generation. In the population of migrants, let the allele frequency for A be constant and given by ¢, where
0 < g < 1. Then counting alleles and numbers of individuals, Roberds et al. [20,21] obtained the following
system:

Xn ﬁX/z~lf(pn—lsXn—l)- (2])

_ Puoifa+ah( +a(=1)")
VY TR Te N

The dynamical behavior of (2.2) is determined by repeated composition of two maps corresponding to even and
odd values of 1.

Fix the alele frequency in the immigrating population at ¢ = 0.95 and consider exponential allele fitnesses of
theform

Xp = Xn~l[f + h(] + O((—l)”)]. (22)

fAA(X) =e 1-0. 154 fAu(X) _ e().Sw«.\' faa(x) - e3~().3xl (‘2'3)

The aa genotype’ sfitnessis large when x is small and decreases rapidly as x increases. This produces unstable
equilibria for small p and h and « = 0, see [20]. In fact, without immigration (# = 0), the line {p = 0} is
invariant and the dynamical behavior of (2.1) on thislineis given by iterating a one-hump map which is chaotic
on an éttracting interval. If immigration is introduced (4 > 0), the line {p = 0} loses its invariance, and the
attractor bifurcates into the region where p > 0 and forms a fish-hook (see Fig. 1) by spreading apart the fold
which occurs at the maximum of the one-hump map. This fish-hook is a chaotic attractor and is the unstable
manifold of the saddle point (p, x) = (0.029. 9.907). indicated by A in Fig. 1. The existence of the fish-hook
indicates that immigration is a source of genetic variation, i.e., in this case dynamical behavior on an attractor
where both alleles are present and where the allele frequency and population density vary in an apparently random
fashion.
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Fig. 1. Fish-hook attractor for (2.2) and (2.3) with i = 0.012 and ¢ = 0.

When « > 0, the 2-periodic forcing results in an attractor which is the union of two fish-hooks, see Fig. 2, which
are mapped back and forth sequentially. Even iterates map one fish-hook to itself and odd iterates map the other
fish-hook to itself. Except for the tip of its spike, the fish-hook formed by odd iteratesis narrower and liesinside
the fish-hook formed by even iterates. The spike of the odd fish-hook extends above the spike of the even fish-hook.
When « > 0, the even and odd fish-hooks appear homeomorphic to each other and to the fish-hook attractor when
o = 0. Careful comparison of Figs. | and 2 indicates that the even fish-hook is abit broader and the odd fish-hook
abit narrower than the fish-hook wheng = 0.
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Fig. 2. Double fish-hook attractor for (2.2) with 4 = 0.012 and « = 0.2.
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3. General framework
The nonautonomous system of difference equations may be written as
= fle, zy—y,n) form=1,2,.., (31

where 7, e R/, f : RxR'xZ — R/, and « is a parameter which measures the amplitude of the periodic forcing.
Since time-dependence occurs only in the forcing term, when« = 0, we define the time-independent map from
R'to R by F(z)= (0, z, n). For example, inserting « = 0 in (2.2), we obtain the autonomous system

Pa—1fa + qh

1’” 2 —\
f+h

When the forcing has period 2, the iterations of system (3. 1) are the repeated compositions of precisely two maps,

Fy and F>, applied in order. The map F;: R’ - R’ is determined by odd values of » and the map F; : R/ — R/ is
determined by even values of ». For the map in(2.2), the second component of fis

Xp = xp—1lf + hl.

Xa—1[f +h(l— a)],
and the second component of F, is
Xn— [f+ (1 + a)].

The forcing term oscillates with magnitude ah about an average of h. Each map depends on the parameter « which
is indicated by the additional subscript «. Hence, F| ,(z) =T (@, z, 2n = 1) and Fru(z)= T @z 2n)fordln
and the even iterates of (3.1) are given by

Ind2 = Fro(Fro(zy)) for n= (0, 2,4, . .

Notice that F|,= Fr o =F if « = 0.

In general, when the forcing has period k, the iterations of system (3.1) are the repeated compositions of precisely
k maps, F1 o, F24.. ., Fiq, appliedin order. Clearly, F; = Ffori=1,2,.., k. The trajectory of a point zg
under (3.1) is given by the n-fold composition of k maps, i.e.,

w=--0F4o0 Fl,aoFk.u 0.0 FZuOFl.a(ZO)-

Henson [12] investigated how a hyperbolic fixed point or m-cycle for the autonomous system perturbs under
small amplitude, k-periodic forcing, using the implicit function theorem in a Hilbert space of periodic sequences.

When « = 0, the m-cycle {Zp, %1, ..., 2,y 1) being hyperbolic means that the derivative of the m-fold composition
of F at 7, has no eigenvalue on the unit circle and, hence, the derivative of the m-fold composition of F at each z;,
i =0,1,..., m—1 hasno eigenvalue on the unit circle. Henson [12]showed that if m divides k then a hyperbolic,

attracting m-cycle for the autonomous system continues to m attracting k-cycles for the nonautonomous system.
These k-cycles may or may not be distinct.

By considering families of compositions, we extend Henson’s analysis to other bifurcations and more general
attractors. For instance, when the forcing is k-periodic, consider the composition G, = F; ,0...0 F240 Fj 4.
A fixed point of G, corresponds to a k-cycle of the nonautonomous system (3.1). When « = 0 and m divides
k, a hyperbolic m-cycle for the autonomous system produces » hyperbolic fixed points of ¢. Since G, isaC'
perturbation of Gy for small « > 0, each of these fixed points continues to a hyperbolic fixed point of G, and hence
produces a k-cycle of (3.1). If a more complicated attractor has a uniform hyperbolic structure (see [23, p. 241]) then
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it would be preserved by C'perturbation. However, uniform hyperbolicity is very difficult to verify for complicated
attractors and often attractors appearing in biological systems do not have such structure. For example, the fish-hook
in Section 2 is not a normally contracting submanifold (see [23, p. 444]) nor does it have a uniform hyperbolic
structure because of the contraction within the attractor near the spike. In the next section, we study properties of
the nonautonomous attractor without making such strong assumptions about the autonomous attractor.

For (3.1) under 2-periodic forcing, the bifurcation from 2-cycle to 4-cycle as ¢ varies corresponds to a period-
doubling (flip) bifurcation for G,. More generally, under k-periodic forcing, the bifurcation from k-cycle to 2k-cycle
corresponds to a period-doubling bifurcation for G,. Let {Z0.wy, 2} ¢, - » Zk—1.0p} D€ @ k-Cycle for (3.1) when
o = ag. Hence Fiyy oy (Zioy) = Zittag for i=0,1,., kK =2 and Fro, (T 1.4,) = 20.x- A period-doubling
bifurcation occurs at @ = «y and z = Zg ¢, only if DGy, (Z0.4,) hasan eigenvalueof 1. We compute that

DG()/() (Z()_(){()) — DF/\'_U(] (Zk‘» ],lX())DFk—l.(X() (z/(—z.&(()) s 'DFI.(XU (5(),(X())~ (32)

Typically, when a period-doubling bifurcation occurs, a stable k-cycle loses stability and is replaced by a stable
2k-cycle.

For the “gene-pool” model introduced in Section 2, we illustrate a cascade of period-doubling bifurcations as the
2-periodic forcing amplitude increases. When « = 0 and 1 = 0.09, system (2.2) exhibits a hyperbolic saddle point
at 7= (0.0907, 9.6995) denoted by A in Fig. 3(a) and an attracting2-cycle given by

{Zo = (0.23235,5.155), z; = (0.0578, 13.826)},

and denoted by + in Fig. 3(a).

As « increases from 0, the hyperbolic saddle Z is replaced by a saddle 2-cycle consisting of the points ((0.11176,
9.0176), (0.08811, 10.5254)) for « = 0.1 and depicted by A in Fig. 3(b). The attracting 2-cycle {7, 7;} is replaced
by two attracting 2-cycles. For ¢ = 0.1, one 2-cycle isthe set

{Zo.0.1» Fi.00 (Zo.0.1)} = {(0.23686,4.6977), (0.05667, 14.2699)},
and represented by + in Fig. 3(b) and the other 2-cycleisthe set
{Z10.1,FroiGront = ((0.05785, 13.312),(02222,5.7092)},

denoted by x Note that the order of the pointsin these 2-cyclesisimportant. For instance, the orbit of the second
point in the 2-cycle denoted by x, i.e., the orbit

((0.2222, 5.7092), F, 0.1(0.2222,5.7092), F> . 1 (F1 0.1(0.2222,5.7092)),. . },

approaches the 2-cycle denoted by —+.

At a & 0.15, the 2-cycle represented by + undergoes a period-doubling bifurcation resulting in an attracting
4-cycle. This attracting it-cycle is denoted by + in Fig. 3(c) whena = 0.2. The attracting 2-cycle denoted by x in
Fig. 3(b) continues as an attractor when« = 0.2 and is denoted by x in Fig. 3(c). Also, the saddle 2-cycle persists
as AinFig. 3(c), but notice that the two points on its orbit have spread apart. In fact, when a= 0.228, the saddle
2-cycle (A) and the attracting 2-cycle (X) annihilate each other in a saddle-node bifurcation. When « 2 0.333, the
attracting 4-cycle (+) undergoes period-doubling resultir; in an attracting 8-cycle (4) pictured in Fig. 3(d). Asa
continues to increase, a period-doubling cascade ensues resulting in an attractor wheno = 0.5 consisting of two
connected components pictured in Fig. 4.

This sequence of bifurcationsillustrates how changes in the amplitude of the periodic immigration change the
character of the genetic variation exhibited by the model. As the amplitude increases, the bistable periodic behavior
in Fig. 3(b) isreplaced by one attractor of higher period in Fsz3(d) and finally by a chaotic attractor in Fig. 4. This
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Fig. 3. Sequence of attractors as « increases: (+) a point on a stable 2-, 4-, or 8-cycle; (A) a saddle point or saddle 2-cycle; (x) a point on a
stable 2-cycle.
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Fig. 3. Two component attractor for system (2.2) when g = 0.5
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chaotic attractor inherits its two component nature from the period of the immigration but it is not homeomorphic
to the pair of fish-hooksin Fig. 2 which occurs at smaller immigration levels.

4. Continuation for more complicated attractors

Fig. 2 illustrates the continuation of afish-hook, which is an attractor when « = 0, under small amplitude forcing
of period 2. The resulting attractor is the union of two fish-hooks and the dynamical system maps one fish-hook to the
other sequentially. The fish-hooks appear homeomorphic to one another and homeomorphic to the original attracting
fish-hook when « = 0. Below, we demonstrate a method which shows that if the amplitude of the k-periodic forcing
is small enough then the attractor is the union of k homeomorphic subsets.

For instance, when the forcing has period 2, orbits may be decomposed into odd and even iterates, see Fig. 2. This
isaccomplished by defining thetwo maps G | ¢ =F2.4 0 F} ¢ and G, o= F 4 0 F2.». For n =1, the points G , (zy)
arethe even iterates of the orbit of zo under (3.1) and the poi ntsG’ﬁ_’,‘a (Fy 4 (z0)) arethe odd iterates of the orbit of
zo. Clearly, F1 , 0G4 =Gr40Fiyand F1, 0G| , =G5 ,0F ,fordl n> 1 F , is caled a semiconjugacy
and it takes orbits of G | , to orbits of G .. Smilarly, > , 0 G2.w=Gi1e0oFrgand F240 G5, = GY , 0F 4,50
F, o is also asemiconjugacy. Since G o, and G, are autonomous dynamical systems, the semiconjugaciesF|
and F» , indicate that the dynamical behavior of each system is quite similar. For example, periodic orbitsof G |
correspond to periodic orbits of G2 and convergent orbits of G | , correspond to convergent orbits of Go . If Fi 4
has an inverse then G5 = F1,,0GY, 0 F]“!iwand, hence, G |, and G, , are conjugate dynamical systems, i.e.,
their dynamical behavior is essentially’ the same (see[23, p. 40]). For instance, if A, is an attractor for G , then
F| « (A) isan attractor for G, , which is homeomorphic to A,.

If o is small then Fj , isa C' perturbation of F, the autonomous dynamical system for a« = 0. If Fis a
diffeomorphism in a neighborhood of the attractor Ay then F|  is a diffeomorphism in a neighborhood of A, because
of the openness of the set of €' diffeomorphisms, e.g., see[ 24, p. 38]. Hence, G , and G» , are conjugate locally.
F; 4(Ay) isan attractor for G, homeomorphic to A, and A, U F| 4 (A) is an attractor for the nonautonomous
system (3.1). Notice that this process does not prove that A, is homeomorphic to Ay because there is no conjugacy
for F. However, in our examples these attractors appear to be homeomorphic. For (2.2) when ¢ == O, the attractor
for the autonomous system is the fish-hook in Fig. 1. In Fig. 2, where @ = 0.2, one fish-hook is an attractor for
G, 4. i.e, theeveniterates of (2.2), and the other fish-hook isitsimage under F) , and is an attractor for G2 4, the
odd iterates of (2.2). The union of these two fish-hooks is the attractor for the nonautonomous system.

An example due to Henson [12] shows that the sets A, and F1 «(A«) may not be distinct. Consider the scalar
equation x, = 0.5(1 4+ a(- 1)")x,—for n>1. The map F(X) = 0.5x has an attracting fixed point at the origin and
is a diffeomorphism. Since G | , = G2.« = 0.25( 1-a?)x, the origin isthe only attractor for the nonautonomous
map, i.e, A, = F| ,(A,) = {0}

In general, if the forcing has period k, for each i =1. ., k, define the map G, : R' - R’ as the composition
of k mapsin the appropriate order starting with F; , which defines a solution orbit of (3.1),i.e,

Gi.(xﬁFiﬁl,uo--OFk‘ao---OFl“u’

where the term F;_; , is taken to be Fy , when i = 1. Clearly, Fj 4 0 Giow =Git1 40 Fipyand Fiy 0 G} | =
G! ., 0 Fig fordl n>11f F;, has an inverse then G | = Fi, 0G}, 0 F,.:X'., ie, Giyand G114 ae

conjugate dynamical systems. Asin the case whenk =2, F; , will have alocal inverse whenw issmall and when
the autonomous map F is a diffeomorphism in a neighborhood of an attractor Ag. In this case, the attractor for (3.1)

is the union of k homeomorphic subsets and has the form

A UF (A UFa(Fla(A) U UF1 o Flo(Ay) . )
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This argument does not show that A, is homeomorphic to Ag. It is more difficult to determine conditions under which
an attractor continues to a homeomorphic attractor under C' perturbation. An assumption of uniform hyperbolicity
on A would guarantee that 4, continues to a homeomorphic attractor of G, ,. Hence, each subset of the attractor
for (3.1) would be homeomorphic to Ag and thiswould be a direct extension of Henson’s results[ 121. However,
our assumption that F isalocal diffeomorphism is different and weaker than hyperbolicity and, hence, our result
is weaker.

5. A prey-predator example

In this section, we discuss a two-dimensional prey-predator system where the attractor for the autonomous system
isan invariant loop which arises via Hopf bifurcation. We prove that the autonomous map F is a diffeomorphism
in a neighborhood of this loop and, hence prove that for small amplitude period 2 forcing the attractor is the union
of two homeomorphic subsets which are also loops.

Let x denote the prey population density and y, the predator density. In order to simplify the transition map, we
assume that the per capitatransition functions are linear functions of the population densities. Our model for the
interaction of these two populations has the form

Xy = Xp—1 (2 = Xp—1 = 0.5y, 1), Va= Yn-1 (0.8 + rxe—p), (6.1)

where the parameter r denotes the conversion rate from prey to predator. Here the prey haslogistic growth in the
absence of the predator with a stable equilibrium at x = 1. In the absence of prey, the predator population decreases
exponentialy. If y >4, then the model is unrealistic because the prey population becomes negative, so we restrict
our attention to small values for the population densities. The equilibrium (x, y) = (0, 0) isaways a saddle point.
The equilibrium (x,y) = (1, 0) isstable for small r, but undergoes a transcritical bifurcation asr increases through
0.2 which results in a stable interior equilibrium (X, y) = (0.2/r, (2r -0.4)/r) for r > 0.2. The interior equilibrium
loses stability via Hopf bifurcation asr increases through 1.2 and the resulting stable invariant curve (see Fig. 5)
persists until r becomes larger than 1.5.

The prey-predator system may experience periodic fluctuations in the parameter r or in any of the constants of
(5.1) dueto environmental variations such as weather or seasonal changes. We incorporate variation of period 2
with amplitude {) 8 in the intrinsic predator growth rate and consider the nonautonomous system:

Xn = Xp—1| (2 = Xp-] — O~5y”—~l)y Yn = Yn—1 (08(1 + Ol(—l)") + 1-3Xn_l), (52)

wheren = 1,2, ..., and &> 0. Hence, the growth rate alternates between(.8( 1+ «) and 0.8( 1 — a) and averages
to 0.8 over two generations. For small g, the attractor for (5.2) will be a set consisting of two subsets homeomorphic
to each other (see Fig. 6) if the map of system (5.1) with r = 1.3 is a diffeomorphism in a neighborhood of the
attracting invariant curve depicted in Fig. 5.

Let F =(F, F») denote the map of system (5.1),i.e,

Fi(x, y) =x@2 =~ x = 0.5y), Frx,y) = y(0.8 + ].3x), (5.3)

In this section, we show that F is a diffeomorphism in a neighborhood of the invariant curve in Fig. 5 by studying
F defined on the open rectangle R = {(x,y) : 0 < x <« 0.5 0 <y < 3}. The derivative of F is given by the matrix

2-2(-05y  -0.5x
DF.y) ‘[ 1.3y 0.8 + 1.3)X (54)
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Fig. 5. Stable invariant curve and linear isoclines for (5.1) with r = 1.3
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Fig. 6. Attractor for system (5.2) with ¢ == 0.1
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Fig. 7. Rectangle R and parabola where F may not be localy “I-I".

By finding where the determinant of (5.4) is zero, we seethat F may fail to belocally “I-I” only on the parabola
given by

Y= 442.5x = 6.5x°. (5.5)

As seen in Fig. 7, this parabola does not intersect the rectangle R.

By studying the component functionsin(5.3), it iseasy to seethat F takestherectangle R into therectangle
S={(x,y):0=<x=0.750<y=<435). Here, we show that for each point (a, ») € § there is at most one point
(x,y)¢R sothat F{x, y)=(a,b). Hence, F will bea“l-I"” maponR By setting F>(x,y) =h and solving for
y interms ofx and b, we see that

B b
T 08 + 1.3X

Inserting the right-hand side of (5.6) into the expression F(x, y) = a we obtain the following cubic equation for
x with coefficients depending on« and b:

Y (5.6)

13x® =185 + (13a + 5b = 16)x + 8a = 0. (5.7)

A straightforward but tedious analysis of the cubic function on the left-hand side of (5.7) shows that Eq. (5.7) has
at most one solution x, so that 0 < x < 0.5. Hence, each point(a, ») in the rectangle S has at most one preimage
(x, y) in the rectangle R under F. R is a neighborhood of the aftracting curve in Fig. 5. The map F from R onto
F(R) is“I-I” with asmooth inverse. Thusfor o small enough, the attractor for system (5.2) isthe union of two

homeomorphic subsets as depicted in Fig. 6.
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6. A population model with period  forcing

Consider a two-dimensional system of difference equations that models the interaction between a population of a
pioneer Species with density x and a popul ation of aclimax species of density y. For ecological interactions of this
type, competitive or cooperative effects impinging on each population can be modeled as functions of total density
variables expressed as linear combinations of the individual population densities, see[25]. Total density variables
of thisform, i for pioneer populations and v for climax populations, may be defined as

u=chixt ey, U= X + 2y,

where the ¢;; are positive constants that reflect competitive effects for a population of type j on a population of type
i. If the per capita growth rates or fitnesses for the populations are assumed to be smooth functions of total density,
changes in population densities between generations can be represented by the following system of equations for
n>1

Xy = Xyep fu), Vo= Ya-18(v).

The function f indicates the fitness function for the pioneer population and g, the fitness for the climax population.
In keeping with characteristic fitness profiles for pioneer and climax species (see25] or [26]), we may assume that
f isamonotone decreasing function of u, whereas ¢ is a one-humped function of v.

Fitness functions of various forms, including linear functions for pioneer populations and quadratic functions
for climax populations, have been used to study the dynamics of these systems (see [26]). In this example, we
illustrate the behavior produced by 5-periodic forcing on the pioneer population when pioneer fitness is linear (i.e.,
f(U) = 2 — u) and climax fitness is quadratic (i.e., g(v) = 4v = v’ = 2). The system of difference equations
that represents changes in population densities over time with stocking or harvesting of period k (not necessarily
minimal period k) may be written as

. 2mn
Xy = Xpei | 2 = (€1 Xp—1 +Cr2Yp-1) +h {1+ asin & ,

Vn = Yn—t1[4(c21x0-1 + CZZyn—l) (Co1xp—1+ C22ynwl)2 - 2], 6.1)

where ¢;; = 078, ¢jp = ca1 =1, ¢ = 05, and n > 1. When o = 0 and } = 0.03, the attractor for the
autonomous system is an invariant loop. If k = 5in (6.1) and« is increased through zero then the invariant loop
for the autonomous system («a = 0) splitsinto an attractor consisting of five loops (Fig. 8). The nonautonomous
dynamical system maps these |oops sequentially, one to the next, in aperiod 5 fashion. It is not difficult to show
that when « = 0 the autonomous map F has a nonsingular derivative matrix in a neighborhood of the attracting
invariant loop. Hence, F has a local inverse at each point along the loop, but we have not been able to prove that F
is a diffeomorphism in a neighborhood of this loop.

7. Summary

Here, we discuss the effects of small amplitude periodic forcing on an attractor for a discrete, autonomous system.
The resulting attractor for the nonautonomous system inherits structure from the original attractor and from the
period of the forcing. If the forcing is k-periodic then we extend the work of Henson|12] for attracting cycles of
the autonomous system to more complicated attractors. Henson [ 12] showed that if i dividesk then a hyperbolic
attracting m-cycle for the autonomous system produces i attracting k-cycles for the nonautonomous system.
From the dynamical behavior of various population models, we observe that a more complicated attractor of the
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Fig. 8. Attractor with five loops for (6.1) with k=5, ¢ = 0.35, and h = 0.03

autonomous system continues to be a nonautonomous attractor which is the union of k subsets each homeomorphic
to the autonomous attractor. Although, we do not establish this rigorously, we describe a method which may
be used to prove that the attractor for the nonautonomous system is the union of k homeomorphic subsets. Our
approach isto view the nonautonomous system as a composition of afinite number of autonomous maps. If the
original autonomous map is a diffeomorphism in a neighborhood of the autonomous attractor then we show that
sequences of k maps which define the nonautonomous system are locally conjugate. The conjugacies provide the
homeomorphisms between attractor subsets. In Section 5, details needed to prove that the autonomous map isa
diffeomorphism are carried out for a prey-predator model.

If the attractor for the autonomous system has additional structure which persists under ! perturbation then
it may be possible to prove that each subset of the nonautonomous attractor is homeomorphic to the autonomous
attractor. For example, the autonomous attractor may be a normally contracting submanifold (see [23, p. 444]).
However, such properties are quite restrictive and are usually difficult to verify.
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